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A theoretical model is developed for the transverse vibrations of bellows expansion joints. The
model is based on Timoshenko beam theory and includes the added mass effect of an internal
fluid. An analytical expression for bellows natural frequencies is developed in the form of
a Rayleigh quotient and is presented in a way which is suitable for hand calculations. The
results for the first four transverse modes are compared with experiments as well as the
predictions of the simplified analysis of the Expansion Joint Manufacturers Association
(EJMA). While the present analysis agrees well with experiments, the EJMA approach can be
substantially in error due to its neglect of rotary inertia and the convolution distortion
component of fluid added mass. ( 1998 Academic Press
1. INTRODUCTION

THE FLEXIBILITY OF BELLOWS EXPANSION JOINTS makes them susceptible to vibration excited
either by external forces or internal flows. As discussed in Part I of this paper (Jakubauskas
& Weaver, 1998), this can lead to premature failure due to fatigue. In order to design against
damaging vibrations, it is necessary to have good estimates of the bellows natural frequen-
cies. To this end, the Expansion Joint Manufacturers’ Association (EJMA 1980) has
presented relatively simple expressions for the axial and transverse natural frequencies of
vibration of bellows.

Considering only axial vibrations, Jakubauskas & Weaver (1996) used a finite element
analysis of a bellows expansion joint modelled as a shell of revolution containing an ideal
fluid. The results showed that, while the EJMA predictions were reasonable for the lowest
modes of relatively long bellows, significant errors developed as the bellows became shorter
and/or the mode number increased. These errors were primarily due to the neglect in the
EJMA model of the effect of convolution shape distortion on fluid added mass. However, it
was found that the EJMA model estimation of axial stiffness of the bellows could also lead
to some error in the prediction of the natural frequency.

Morishita et al. (1989) studied the transverse vibrations of a bellows expansion joint using
Timoshenko beam theory and finite element analysis. They found good agreement with
experiments, at least in the lowest modes, but found substantial error in the EJMA
predictions. The latter was attributed to the neglect of rotary inertia in the EJMA model.
However, Morishita et al. also used a rather simple estimate of the fluid added mass,
neglecting convolution distortion.
0889—9746/98/040457#17 $30.00 ( 1998 Academic Press
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The purpose of the research presented in this paper was to develop a theoretical model
which more accurately represents the transverse vibrations of fluid-filled bellows while
lending itself to hand calculations. To this end, the bellows were modelled as an equivalent
Timoshenko beam containing flowing fluid, and the effect of convolution shape distortion
during bending on fluid added mass, as developed in Part I of this paper, was included.
While the methodology is sufficiently general that it can be used for double (universal)
bellows, the results are presented here only for single bellows. The predictions of the
approximate Rayleigh quotient formulae are compared with the ‘‘exact’’ solution and with
experimental results for the first four modes of lateral vibration. Experiments were conduc-
ted in air as well as quiescent and flowing water, so that the predictions for fluid added mass
and flow excited frequencies could be validated.

2. THEORETICAL DEVELOPMENT

2.1. GENERAL EQUATION OF MOTION

Since the transverse vibration of a bellows is being modelled as a relatively short beam in
bending, rotary inertia is considered to be important and Timoshenko beam theory is used
[see, for example, Timoshenko et al. (1974)]. Additionally, since this research was motivated
by bellows vibrations excited by internal fluid flow, the beam is represented as a pipe
conveying fluid of density o

f
, velocity, », pressure, P and net flow area A

.*/
[see, for

example, Paidoussis & Li (1993) or Blevins (1990)]. The general equation of motion is then
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where EI
%2

is the effective bending stiffness of the bellows, m
505

is the total mass per unit
length of the bellows including the added mass, oI in the third term is the effective rotary
inertia of the bellows and contained fluid, the terms containing Gk@ account for shear, the
fifth term is the Coriolis force, and the sixth term accounts for the pipe curvature effects of
pressure and centrifugal forces. Note that the pressure is assumed to be constant over the
length of the bellows since the pressure drop due to flow losses will be small in comparison
with any mean pressure which is large enough to have an effect on the bellows response. All
parameters are defined in the Nomenclature. Significant simplification can be achieved by
examining the various terms in this equation in detail.

For short beams in bending, the effect of shear deformation is typically of the same order
of magnitude, or even greater, than that of rotary inertia. However, Morishita et al. (1989)
argued that the effect of shear deformation on the bending of bellows was negligibly small.
This was confirmed by calculation for the bellows studied in this research, which showed
that the ratio of shear to rotary inertia was of the order 10~3 (Jakubauskas 1996). Therefore,
the shear terms in equation (1) will be neglected.

The Coriolis force can substantially affect the vibration of a pipe, and even generate
a dynamic instability for certain pipe boundary conditions, if the flow velocity is sufficiently
high. Calculations showed that, even for a typical bellows configuration with a length three
times the mean radius, an extreme water velocity of 10 m/s produced less than 0.5% change
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in the natural frequency in the first two transverse modes (Jakubauskas 1996). Thus, the
Coriolis forces are considered negligible for practical bellows applications.

The last term in equation (1) contains the pressure and centrifugal force terms which can
reduce the vibration frequency and ultimately lead to buckling. Jakubauskas (1996) showed
that velocities up to 10 m/s produced a reduction in transverse natural frequency of less
than 0)4%. On the other hand, the maximum pressure in the bellows permitted by the
EJMA Standards (1980) produced a reduction in the first-mode natural frequency of 7)6%
for the bellows used for experimental validation in this research. Therefore, the pressure
term in equation (1) is retained while the centrifugal force term is dropped.

The equation of motion considered valid for transverse vibrations of typical bellows
expansion joints containing flowing fluid is therefore assumed to take the following form:
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Before proceeding, it is necessary to determine the equivalent bending stiffness, EI
%2

,
effective moment of inertia, oI, and total mass per unit length of the bellows, m

505
, in terms of

the bellows material and geometric properties.

2.2. EQUIVALENT BENDING STIFFNESS, EI
%2

The corrugations of a bellows make it impossible to determine the bending stiffness in the
usual manner. For the present analysis, the equivalent bending stiffness is determined in
terms of the axial stiffness and geometry of the bellows using concepts from the strength of
materials.

For a uniform bar of length l, cross-sectional area A and modulus of elasticity E, the axial
stiffness, k

b
, is given by [see, for example, Beer & Johnston (1981)]

k
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l
. (3)

Considering now the axial stiffness, k, of a one-half convolution of a bellows, by analogy to
the bar of equation (3), the length is half the convolution pitch p, l"p/2, and the equivalent
cross-sectional area A

%2
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If it is assumed that the bellows can be represented as a thin circular cylinder of mean
radius, R

m
, then the radius of gyration, r, is given by
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2
R2

m
. (5)

Continuing with the analogy of the uniform bar in axial tension and using the relationship
between the radius of gyration and the moment of inertia from strength of materials, the
equivalent moment of inertia for the bellows, I

%2
, can be determined by using equations (4)

and (5):
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The equivalent bending stiffness of the bellows can then be written as
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m
. (7)

The axial stiffness of bellows, k, can be determined using the simple expressions given
by Gerlach (1969) or EJMA (1980). An explanation of the latter is given by Broyles (1994).
However, Jakubauskas & Weaver (1996) showed that these formulae under- and overesti-
mate, respectively, the actual stiffness somewhat. Gerlach (1969) recognized this and
recommended the use of measured axial stiffness, if possible, for frequency calculations.
Axial stiffness calculations for the particular bellows used in this present research for
experimental validation of the theory (Jakubauskas 1996) indicated that Gerlach’s formula
underestimated the finite element predictions by about 8)5% while the EJMA formula
overestimated the stiffness by about 18%. To eliminate this error from the theoretical
predictions presented in this paper, the axial stiffness obtained from finite element analysis
was used in subsequent calculations.

2.3. BELLOWS MASS PER UNIT LENGTH, m
505

The total bellows mass per unit length is the mass of the bellows, m
b
, plus the fluid added

mass, m
f
, determined in Part I of this paper. Referring to the bellows geometry in Figure 1,

the mass per unit length of the bellows alone, is given by
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where R
m

is the mean radius of the bellows as discussed in Part I of this study, o
b

is the
bellows material density, t is the material thickness, the term in brackets in the numerator is
the meridional length of a convolution, and 2(R

1
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2
)"p, the length of the convolution

pitch. Thus, equation (8) can be rewritten as
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Using the expression for fluid added mass, equation (24) from Part I, the total mass per unit
length is
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where a
f2k

is a function involving integrals of the kth mode shape and its second derivative
[equation (16), Part I] and k is the added mass coefficient determined graphically (figure 6,
Part I). The first and second terms in the square brackets account for the rigid-body
translation and convolution distortion components of fluid added mass, respectively.

2.4. EFFECTIVE ROTARY INERTIA OF BELLOWS AND CONTAINED FLUID, oI

The rotary inertia of bellows can be considered as consisting of three parts:
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where o
b

and o
f

are the bellows and fluid density, respectively, and I
b
, I

f1
and I

f2
are

the effective moments of inertia of the bellows, the fluid trapped between the bellows
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convolutions, and the fluid in the central portion of the bellows, respectively. Except
for very viscous fluids, I

f2
is assumed to be negligible [see, for example Paidoussis

et al. (1986)].
By analogy to an equivalent thin walled pipe, the equivalent cross-sectional area, A

b
, can

be written

A
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where t
b
is the equivalent wall thickness determined from the bellows geometry. Referring to

the geometry in Figure 1,
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Using the relationship from strength of materials relating the moment of inertia, the
cross-sectional area and the radius of gyration, equations (5) and (6), with equations (12) and
(13), the effective moment of inertia of the bellows, I

b
, can be determined in terms of the

bellows geometry.
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A similar methodology can be used to find the effective moment of inertia of the fluid
trapped between the bellows convolution. The mean cross-sectional area of the trapped
fluid, A

f1
, is taken as the volume of trapped fluid divided by the convolution pitch, p,
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Figure 1. Details of bellows geometry.
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Again using equations (5) and (6) from strength of materials, the moment of inertia of the
fluid trapped between convolutions is given by
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The effective rotary inertia of the bellows and contained fluid can now be determined using
equations (14) and (16) in equation (11), which becomes after simplification using the
bellows geometry
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2.5. APPROXIMATE SOLUTION OF THE EQUATION OF MOTION

The equation of motion for the bellows, equation (2), can be solved using the boundary
conditions for a clamped—clamped beam,

w (0)"
d
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w (0)"w (l)"

d
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w(l)"0. (18)

The assumption of clamped boundary conditions is quite reasonable since the bellows
end flanges and connecting pipe are typically much stiffer than the bellows. While the
equation of motion (2) subject to boundary conditions, equation (18), can be solved exactly,
an approximate solution in the form of a Rayleigh quotient will be adopted here in order to
obtain an analytical expression for the bellows natural frequencies. To this end, the solution
is assumed to take the form

w (x, t)"X (x)sinut. (19)

Substitution of equation (19) into equation (2) yields the ordinary differential equation
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Multiplying equation (20) by X, integrating by parts and using boundary conditions (18),
gives an equation for the natural frequency of the kth mode, u
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where a ‘‘prime’’ refers to differentiation with respect to x. Equation (21) can be further
simplified by introducing the dimensionless coordinate m"x/l, using the relationship
between equivalent beam stiffness [equation (7)] and converting from circular frequency to
cycles per second, u
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where
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The mode shape functions X
k
in equations (23) are understood to be written in terms of

the dimensionless coordinate m, i.e. X
k
(m). Thus, once the mode shape function satisfying

boundary conditions given by equation (18) are known, the constants A
ik

of equations (23)
can be determined once and for all. A good approximation for the functions X

k
can be

obtained from the well-known solution of the Bernoulli—Euler equation for a clam-
ped—clamped beam [see, for example, Timoshenko et al. (1974)]. Using these beam fun-
ctions as appropriate mode shape functions for the first four modes in equations (23)
generates the solution for the A

ik
constants given in Table 1.

It should be noted that the coefficient of the convolution distortion component of fluid
added mass, a

f2k
, in equation (10), which was derived in Part I of this paper, also contains

the coefficient A
1k

. This coefficient is expressed in the form [equation (25) of Part I]
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2.6. BELLOWS STABILITY AND FREQUENCY COMPARISON WITH EXACT SOLUTION

It can be seen from equation (22) that the bellows will become unstable if the term under the
square root becomes negative, i.e. if the pressure P becomes sufficiently large. The stability
condition for the critical pressure, P

#3
, in the first mode is therefore
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This is quite close to the critical pressure given by EJMA (1980),

P
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It appears that the difference is due to the EJMA assumption that the mode shape is a sine
function, i.e. A

21
"1/(4n2). For design purposes, EJMA (1980) recommends a maximum

internal pressure P
#3
/6)6665P.
TABLE 1
Coefficients A

ik
for first four modes of a single bellows

Mode number k 1 2 3 4

A
ik

22)37 61)67 120)9 199)9
A

2k
0)02458 0)01211 0)00677 0)00374

A
4k

12)30 46)05 98)91 149)4
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In order to evaluate the performance of the approximate solution for bellows natural
frequencies given by equation (22), the exact solution of equation (20) subject to boundary
conditions (18) was computed for the particular bellows used in the experiments described
in the following. For the maximum pressure permitted by EJMA (1980) [equation (26)], the
approximate frequency prediction was within 0)6% of the exact solution for the first three
modes. (A comparison was not made for the fourth mode as this seemed unnecessary.) This
excellent agreement is not unexpected, since the error in frequency predictions of the
Rayleigh quotient are always much less than the error in the approximate mode shape
functions used, and the mode functions used for the calculations are considered to be quite
good. This comparison is thought to be important, since now any differences observed
between the frequency predictions of equation (22) and experiments can be attributed to
theoretical model approximations rather than errors in the Rayleigh quotient approxima-
tion.

3. EXPERIMENTAL VERIFICATION

Experiments were conducted using a stainless-steel bellows with the following parameters:
R

m
"0)0842 m, h"0)0157 m, R

1
"0)00353 m, R

2
"0)00248 m, l"0)1555 m,

t"0)368 mm, E"2)07]1011 Pa, l"0)3, o
b
"7860 kg/m3. Finite element calculations for

the axial stiffness of these bellows gave a value of k"1.126 MN/m per one half-convolu-
tion. The measured weight of the bellows without flanges was found to be 4)631 kg/m.
Experiments were carried out with a special fixture which permitted determination of the
bellows natural frequencies with static air and water at atmospheric and higher pressures.
The bellows were then inserted into a water tunnel loop to study flow excitation. This was
considered important since the primary motivation for the research was to develop
a relatively simple and accurate theoretical model to predict the flow-excited resonant
frequencies of bellows. It has been assumed that the fluid flow does not alter the bellows
natural frequencies.

3.1. EXPERIMENTS WITH STATIC AIR AND WATER

A special fixture, shown in Figure 2, was designed for these experiments so that the fixture
would not influence the bellows dynamics, provide ideal fixed boundary conditions and
permit pressurization. The end plates, r and t, were made from aluminium with four steel
spacers, s, and tie bolts, u. This assembly had a fundamental frequency of 2560 Hz, more
than 20 times the lowest bellows axial frequency in air (124 Hz) and the lowest transverse
bellows frequency when filled with water (112 Hz). Even for the highest mode of interest in
this study, the fourth transverse mode in air (about 600 Hz), the fundamental fixture mode
was more than 4 times greater. The valves, marked v and y in Figure 2, were used for
filling the bellows with water and adjusting the pressure in the bellows determined using the
pressure gauge, x. The stainless-steel bellows, z, had heavy flanges which were bolted to
the end plates using eight bolts, w.

The bellows frequencies were obtained by measuring the bending strains near the
convolution crown using two small strain gauges, also shown in Figure 2. These gauges
were located precisely 180° apart on the convolution so that, depending on their wiring in
the bridge, they could be used to separate axial from transverse vibration modes. The
frequency spectra were obtained using a Fourier analyser in the transient capture mode;
two typical shock excitation spectra are shown in Figure 3, along with the strain gauge



Figure 2. Experimental fixture for vibration testing.
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bridge arrangement. Figure 3(a) shows the clear response peaks of the first seven axial
modes of the bellows with internal air at atmospheric pressure. Figure 3(b) gives the first
four transverse modes for the bellows under the same conditions. The significant results of
all such tests are summarized in Table 2 and compared with the theoretical predictions.

Examination of the comparisons in Table 2 reveals some interesting results. First, the
theoretical predictions for all cases are quite good, with excellent agreement for the first
mode and a maximum error of 5% for the fourth mode in water. Second, fluid-added mass
substantially reduces the bellows frequencies (order of 40%) and this is predicted well by the
theory. Finally, the effect of pressurization to 200 kPa is to lower the fundamental frequency
of the bellows in air by about 7% and this effect diminishes with increasing mode number
(about 1)7% for the fourth mode). Again, the theory predicts this behaviour very well. The
effect of pressurization of the bellows with water is essentially the same in all aspects so the
results have not been shown.

Having demonstrated the validity of the present theoretical model, it is useful to examine
the degree to which it represents an improvement over the existing model of EJMA (1980).
To this end, calculations were carried out for the cases presented above using Be-
rnoulli—Euler theory with and without the contribution of convolution distortion on added
mass and using the simplified approach of the EJMS Standard (1980). The results are
summarized in Table 3.



Figure 3. Typical vibration response spectra: (a) axial modes; (b) transverse modes.
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TABLE 2
Summary of experimental results (exp.) and comparison with theoretical predictions (theo.)

Mode Air (P"0) Air (P"200 kPa) Water (P"0)

Frequency (Hz) Frequency (Hz) Frequency (Hz)

Exp. Theo. (% error) Exp. Theo. (% error) Exp. Theo. (% error)

1 202 199 (1)5) 188 187 (0)5) 112 111 (0)9)
2 337 329 (2)4) 328 320 (2)4) 210 208 (1)0)
3 475 455 (4)2) 466 449 (3.6) 289 286 (1)0)
4 606 579 (4)5) 596 574 (3)7) 363 345 (5)0)

TABLE 3
Comparison Bernoulli—Euler beam theory and EJMA model with experiments for air and

water

Mode Frequency (Hz)

Air (P"0) Water (P"0)

Exp. B-Euler EJMA Exp. B-Euler B-Euler EJMA
incl. m

f2
w/o m

f2

1 202 344 345 112 137 141 140
2 337 919 923 210 323 388 386
3 475 1792 1810 289 461 761 753
4 606 2977 2992 363 515 1258 1252
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The comparisons in Table 3 are very revealing. Since the theoretical calculations using
Bernoulli—Euler beam theory agree so well with those of EJMA, it appears that the latter
must be based on such an analysis. The results in air show that the neglect of rotary inertia
produces a substantial overestimate of the bellows transverse vibration frequencies and that
this trend increases with mode number. While still substantially in error, the EJMA
estimates for transverse frequencies in water are better than those in air, especially for the
first mode. This results from the fact that the rigid-body component of fluid added mass,
included in the EJMA approach, dominates rotary inertia and the convolution distortion
component of fluid-added mass, m

f2
in the first mode. As the mode number increases, the

convolution distortion component of added mass becomes more significant and the EJMA
estimate deteriorates.

It is concluded that rotary inertia must be included in the analysis of transverse
vibrations of bellows and that the convolution distortion component of fluid-added mass,
while having a rather small effect on the first transverse mode, must be included to obtain
reasonable estimates of the higher transverse frequencies of bellows with internal water.
Clearly, the extent of these effects will be dependent on the geometry of a particular bellows.
The 13 convolution bellows used in this study are considered to be fairly typical and the
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observed effects of rotary inertia and convolutional distortion are expected to increase for
shorter bellows.

3.2. FLOW-INDUCED VIBRATIONS OF BELLOWS

In order to study the flow-induced vibrations of the bellows examined above, they were
inserted into a closed-return water tunnel (Jakubauskas 1996). In the first set of experi-
ments, the bellows were placed downstream of a straight section of pipe so that the flow
through the bellows would be fully developed with a relatively flat velocity profile. The
Reynolds number in the range of flows of interest exceeded 105. The flow velocity was
measured using a pitot-static probe at the centreline of the pipe. The vibration response was
obtained using the strain gauges and the Fourier analyser discussed in the previous section
although, in this case, the r.m.s. magnitudes of the vibration amplitude peaks in each mode
were obtained from 60 sample averaged spectra.

The vibration response was measured starting with a flow velocity of about 1 m/s and
then the velocity was incremented. After waiting for sufficient time for steady-state operat-
ing conditions to be achieved, the vibration response was obtained as done previously
and the whole process repeated to a flow velocity of about 9 m/s. The results are sum-
marized in Figure 4. It should be noted that the response amplitudes are from bending
strain measurements on one of the bellows convolutions. Thus, the r.m.s. response
amplitudes in Figure 4 are plotted on an ‘‘arbitrary scale’’ and the height of the various
peaks should not be interpreted as being indicative of the relative significance of the
corresponding modes.

Figure 4 shows that the bellows response was negligible until the velocity exceeded about
1)5 m/s, at which point resonance in the first axial mode (90 Hz) was induced. This
resonance peaked at about 2)4 m/s, and then gave way to resonance in the first transverse
mode (112 Hz). The latter reached a peak at about 3 m/s and then gave way to resonance in
the second axial mode, 176 Hz. This was followed by successive peaks in the third axial
mode, 254 Hz and the third transverse mode, 293 Hz. No evidence of the second transverse
mode expected at 210 Hz was observed. It appears that this mode was overwhelmed by the
adjacent axial modes.

The succession of self-excited flow-induced resonant modes observed here is essentially
the same as reported by Weaver & Ainsworth (1989). No significant vibration is observed
up to some critical velocity and then, as the flow velocity is increased further, mode after
mode becomes unstable in the sequence of the natural frequencies. Weaver & Ainsworth
reported a Strouhal number, St"0)45, in their study.

St"
fp

»

"0)45, (27)

where f is the bellows natural frequency in Hz, p is the bellows pitch (m) and » is the mean
flow velocity (m/s) through the bellows, taken at the resonance peak. The data from the
present study give an average value for Strouhal number of 0)444 with a standard deviation
of 0)011 which agrees well with the previous results.

The importance of these findings is that resonance in the transverse modes can be excited
by internal flow in bellows and that the no-flow natural frequencies provide an excellent
estimate of the flow-excited frequencies. This confirms the assumptions that Coriolis and
centrifugal forces have a negligible effect on the bellows natural frequencies over the range



Figure 4. Vibration response as a function of flow velocity (bellows with straight pipe upstream).
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of flow velocities of practical interest. These frequencies can be used with a Strouhal number
of 0)45 to determine a limiting mean flow velocity for safe operation of the bellows
expansion joints. The bellows resonant response amplitudes are sufficiently high that they
are clearly visible with the naked eye and, for the range of frequencies in this study, also
clearly audible. Continuous operation at resonance will likely produce fatigue failures in
a relatively short period of time. This was observed in the experiments of Weaver &
Ainsworth (1989).

3.3. BELLOWS NEAR AN UPSTREAM ELBOW

It is commonplace to locate bellows expansion joints immediately downstream of pipe
elbows. Weaver & Ainsworth (1989) observed that bellows could be excited to resonance
even if only a portion of the circumference of the convolutions was exposed to a sufficiently
high flow velocity. It is well known that flow separation at the inside radius of a pipe elbow
produces a flow velocity at the downstream outside radius which is substantially higher



Figure 5. Vibration response as a function of flow velocity (bellows just downstream of a 90% elbow).
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than the mean pipe flow velocity. Thus, it is reasonable to expect that, if a bellows is exposed
to such a nonuniform flow, then it could be excited to resonance at lower mean flow
velocities than bellows exposed to uniform flows. To examine this possibility, the bellows of
Section 3.2 were located immediately downstream of a standard 90° radiused elbow in the
water tunnel pipeline and the experiments repeated. The results are plotted in Figure 5.

Careful examination of Figure 5 shows that the overall response behaviour of the bellows
as a function of flow velocity is essentially the same as observed for uniform flows in Figure
4. The excited frequencies have the same values and sequence, except that the third
transverse mode at 293 Hz has dropped out, while the fourth and fifth axial modes have
appeared at 323 and 387 Hz, respectively. The most important difference between Figures
4 and 5 is that the resonance peaks all appear at lower mean flow velocities in the latter case.
The average Strouhal number, based on mean pipe flow velocity, corresponding to the
resonance peaks in Figure 5 is 0.574 with a standard deviation of 0)046. The scatter in these
results is clearly greater than for the uniform flow case, as might be expected. However, the
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important practical implication is that the mean flow velocity required to excite resonance
when the bellows are immediately downstream of a 90° elbow is, on average, 29% lower
than that required when the bellows are exposed to uniform flow.

4. CONCLUSIONS

A theoretical model for the transverse bending vibrations of bellows has been developed.
The model includes the effects of rotary inertia and fluid added mass and is presented in
a way that permits hand calculation of natural frequencies. The theoretical predictions were
compared with those of the simple model of EJMA (1980) and with experimental results for
bellows in air, and in quiescent and flowing water. The principal conclusions are sum-
marized as follows.

1. The excellent agreement between the present theory and experiment tends to validate
the assumptions used in modelling the fluid added mass and the bellows as a Timoshenko
beam with negligible shear.

2. The EJMA (1980) model substantially overestimated the transverse natural fre-
quencies of the bellows used in this study in both air and water. This is due to the neglect
of rotary inertia when added mass effects due to convolution distortion are small, i.e.
for bellows in air or for the first transverse mode of relatively long bellows filled with
water.

3. The convolution distortion components of fluid added mass is small for the first
transverse mode of relatively long bellows, i.e. it lowered this mode frequency about 3% for
the bellows studied. However, this fluid-added mass component becomes increasingly
important as the bellows length is reduced and/or the transverse mode number is increased.
For the bellows used in this study, neglect of the convolution distortion component of
added mass in the fourth mode results in an overestimation of the natural frequency by
about 140%. Neglect of this added mass component and rotary inertia in the fourth mode
of the present bellows in water results in a frequency prediction which is over 240% too
high.

4. Fluid flowing through bellows is expected to have a negligible effect on their natural
frequencies, at least in most practical applications. For the present bellows, no effect was
observed up to a mean water velocity of 10 m/s.

5. The effect of internal pressurization on bellows natural frequencies is relatively small
on the first transverse mode and decreases with increasing mode numbers. For the present
bellows this effect was about 7% for the first mode and less than 2% for the fourth mode.

6. The presence of a 90° radiused elbow immediately upstream of a bellows can substan-
tially reduce the mean flow velocity required to excite bellows to resonance. For the present
bellows, this effect averaged about 29% over all the modes studied.
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APPENDIX: NOMENCLATURE

A
b

bellows equivalent area to a thin pipe
A cross-sectional area
A

%2
equivalent bellows cross-sectional area

A
.*/

net flow area through bellows
A

f1
mean area of fluid trapped in bellows convolution

A
ik

ith constant for mode k
E modulus of elasticity
EI flexural stiffness of beam
EI

%2
equivalent bending stiffness of bellows

f frequency (Hz)
G shear modulus of elasticity
h total convolution height
I second moment of area (moment of inertia)
I
%2

bellows equivalent moment of inertia
I
b

effective bellows moment of inertia for rotation
I
f1

effective moment of inertia for rotation of trapped fluid
I
f2

effective moment of inertia for central fluid in bellows
k axial stiffness of bellows
k
b

axial stiffness of bar
k@ shear constant
l length of beam, bar or bellows
m

505
total bellows mass per unit length (including fluid added mass)

m
b

bellows mass per unit length
p convolution pitch
P fluid pressure
r radius of gyration
R

1
convolution root radius

R
2

convolution crown radius
R

m
mean radius of bellows

St Strouhal number
t bellows convolution thickness
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t
b

bellows equivalent wall thickness referred to a thin-walled pipe of radius R
m

» mean flow velocity through bellows
w transverse displacement
X

k
bellows mode shape in kth mode

a
f2k

integral function for bellows distortion fluid added mass in kth mode
k added mass coefficient
o density
o
b

density of bellows material
o
f

fluid density
u frequency (rad/s)
u

k
bellows natural frequency, kth mode

Subscript
k kth mode
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